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HEAT TRANSFER DURING MELTING IN RECTANGULAR 
ENCLOSURES-A FINITE ELEMENT ANALYSIS 
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SUMMARY 
This paper is devoted to the finite element analysis or heat transfer during melting in rectangular enclosures. 
The effects of aspect ratio and subcooling on the motion of the interface and the Nusselt number have been 
investigated. The different schemes employed in the present work throw useful light on the choice of the 
appropriate method for dealing with such phase change problems. 
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INTRODUCTION 

Over the last few years a considerable amount of experimental and numerical research has been 
carried out to determine the role of natural convection in the kinetics of heat transfer during the 
melting of a solid phase change material (PCM). Typical application areas of current interest 
include thermal energy storage devices, casting technology and nuclear power, especially in the 
area of accident analysis.' The results have been presented for several different geometries, the 
approach being essentially two-dimensional. The configurations most widely studied are the 
horizontal cylinder, the vertical cylinder and the rectangular enclosure. 

Most of the experiments employed n-octadecane as the PCM, although Gau and Viskanta' 
also reported results for gallium. Van Buren and Viskanta3 carried out an interferometric study 
on n-octadecane and concluded that such studies should be restricted to natural convection 
phenomena with small temperature differences because of the difficulty in interpreting the high 
fringe density produced by larger temperature differences. Webb and Viskanta4 studied the 
melting heat transfer in an inclined rectangular enclosure. In typical thermal storage applications 
the Rayleigh number in the liquid region is very high, typically in the range from lo6 to lo9.' 

Experiments6 indicate that the flow remains entirely laminar in this range of Rayleigh numbers, 
the transition to turbulence occurring only beyond Rayleigh numbers of 10". Such high- 
Rayleigh-number flow is characterized by fast-moving thin shear layers through which most of 
the heat transfer takes place, while the region away from the walls, often called the 'core region', is 
mostly inactive.' Most numerical studies conducted so far have employed efficient finite differ- 
ence schemes to solve the steady state convection problem, using a false transient procedure to 
accelerate convergence. Bearing in mind the difficulty of treating the conservation equations in 
a non-orthogonal cavity, some authors have used the method of transformation. Gobin and 
co-workers5. ' 9  ' used a linear transformation technique for transforming a non-orthogonal cavity 
into an orthogonal one. The resulting conservation equations are simplified by neglecting the 
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cross terms due to the non-orthogonality of the co-ordinate transformation. Ho and Vi~kanta,~ 
however, used a streamfunction-vorticity function formulation in which the cross-differential 
terms have been considered and these cross terms have been evaluated from the values of the 
variables at the previous time step. The prospects of the fixed grid method have also been 
explored in considerable detail. The main problem with fixed grids is in accounting for the 
zero-velocity condition as the liquid region turns to solid. Morgan" employs the simple 
approach of fixing the velocities to zero in a computational cell whenever the mean latent heat 
content AH reaches some predetermined value between zero and L, where L is the latent heat of 
phase change. Gartling' employed a similar approach by assuming the viscosity to be a function 
of AH such that as AH decreases from L to zero, the viscosity increases to a large value. Voller et 
ul.11-13,20 investigated various ways of dealing with zero solid velocities in fixed grid enthalpy 
solutions of freezing in a thermal cavity formulation for the numerical solution of convec- 
tion-diffusion-controlled mushy region phase change problems. The potential of the finite 
element method has revived interest in the past few years in the solution of phase change 
problems. The objective of the present work is to investigate the conventional problem of melting 
of a pure phase change material from an isothermal vertical surface by employing the finite 
element method. The effect of various degrees of subcooling has also been reported. 

FORMULATION OF THE PROBLEM 

Consider the two-dimensional melting of a solid PCM from an isothermal vertical wall (Figure 1). 
The solid PCM may be initially at the fusion temperature T, or may be maintained at 
a temperature below T,. The bottom and top free surfaces are assumed to be insulated. 
Accordingly, the problem be treated as a one-region or two-region one. The following further 
assumptions are made. 

1. 
2. 

3. 
4. 
5. 

6.  

7. 

8. 

The thermophysical properties of the material undergoing phase change are constant. 
The density variation in the liquid is considered only insofar as it contributes to buoyancy, 
but is otherwise neglected, i.e. the Boussinesq approximation is valid. 
The liquid is assumed to be Newtonian. 
Two-dimensional laminar flow is considered. 
The heat transfer near the topmost portion of the melt, due to the expansion of the PCM 
upon melting, has been neglected. 
Themelt front surface is smooth, i.e. there are no effects arising from dendrite formation or 
coarse-grained crystal structure in the solid. 
The whole melting process may be considered to consist of a number of quasi-static 
processes. 
The effect of surface tension along the free surface is also neglected. 

As far as the assumption of a quasistatic process is concerned, it is worthwhile to mention the 
following experimental ob~ervation:'~ the velocity of propagation of the melt front was of the 
order of 3 x m s- I, which was several orders of magnitude smaller than the fluid velocities, 
which were of the order of 3 x lop3 m s - l ,  in the boundary layers on the vertical walls. This 
suggests that the calculation of the melt front motion can be decoupled from the calculation of the 
natural convection flow in the melt region by dividing the process into a number of quasi-static 
processes. Thus for a given melt cavity the conservation equations are solved first, then the heat 
fluxes along the interface are calculated. In the case of subcooling, the solid side heat fluxes have 
also to be calculated. The final position of the interface is then obtained by solving the interface 
energy equation. As soon as the melt cavity is defined, the steps are repeated. Regarding the 
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Figure 1. The problem under consideration 

choice of the value of the Stefan number, it is worthwhile to mention that for Stefan numbers 
greater than 0.2 the quasi-static assumption may not be valid since the fluid flow velocity and the 
melt front velocity may be comparable. However, the aforesaid limit on the Stefan number can be 
driven up if there is a considerable amount of subcooling since subcooling is known to impede the 
melting process. 

The conservation equations, after non-dimensionalization, may be written as 

aulax + avla y=o, (14 
uaulax + vau/ar= - ap/ax + ( a 2  u/ax2 + a 2  ula r2)/A, (1b) 

UaV/aX+ VaV/dY=-aP/aY+(a* V/aX2+a2 V/dY2)/A+8, (W 
uaelax + vae/a Y= ( P e p  Y+ a28/a Y2)/APr. (14 

The following non-dimensional quantities have been introduced: 

u = u/uo, v= u/uo, p = P I P 4 ,  X = x / H ,  

Y=y/H, e = v -  7aw,.- m, A = (Ra,/Pr)' 1 2 .  

The boundary conditions are as follows: 

(a) at X=O:  U=V=O, 8=1; 

(b) at Y=O U = V = O ,  aO/aY=O; 

(c) at y=i: v=o, ae/aY=o, au/ar=o. 
The additional boundary conditon in (c) for the free surface, i.e. dU/dY=O, does not necessitate 
any special attention in the finite element method since it is taken care of by the inter-element 
continuity requirement. 

(d) at X =  W/H:  U =  V=O, 8= -SC/Ste;  

at the interface: U = V= 0, 8 = 0. 
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In the case of subcooling, i.e. the case for which T, < T,, the conduction in the solid phase must be 
considered. Finally, the non-dimensional energy equation at the interface is given by 

~ S / ~ ( F O )  = Ste (ves. n - veL. n), 
where n is the local normal to the interface. 

Melting of a pure substance in a rectangular enclosure is characterized by five dimensionless 
parameters: Rayleigh number (based on height), Prandtl number, Stefan number, aspect ratio and 
subcooling parameter. 

Discretization of the aforesaid equations has been carried out by Galerkin’s method. The basic 
element used for the computations is an eight-noded isoparametric quadrilateral in which 
quadratic ‘serendipity’ functions are used to approximate the velocity and temperature. However, 
linear interpolating functions are used for the pressure.” Details of the formulation and method 
of solution are discussed in Reference 16. For the sake of brevity it is noted that the non-linearities 
in the discretized equations are treated by a Newton-Raphson method and the resulting 
simultaneous equations are solved by a frontal solver.” During the iteration process the largest 
value of the residue at each iteration was noted. The process was assumed to have converged 
when the largest residue reached preassigned value as low as 0*00005. At convergence the absolute 
value of the difference between two successively iterated values of any variable did not exceed 
0.000 1. 

Initially we attempted to solve the phase change problem in the absence of subcooling. The 
space discretization was confined to the liquid zone only since the problem was essentially 
a one-region problem. Initial results were promising. The major advantage of this was that nodes 
could be placed along the interface boundary and no-slip boundary conditions could be easily 
incorporated. However, as the curvature of the interface increased, we experienced difficulty in 
getting an accurate solution. We then concentrated on the fixed grid method as outlined by 
Gartling.’ In this method the whole area occuped by the PCM was discretized once and for all to 
obviate the basic source of error associated with the earlier method, i.e. too much deformation of 
the eight-noded isoparametric quadrilateral element may prevent satisfactory functioning of the 
transformation functions. Then in the fixed grid method the interface was allowed to traverse the 
computational domain. The most important aspect of this method was that the same conserva- 
tion equations were used for both phases, including the elements that contain a mixture of liquid 
and solid PCM. The distinction between the solid and liquid phases was made by declaring the 
viscosity to be space-dependent and a ‘high’ value of the viscosity was assigned to the element 
nodes that fell in the solid phase. According to our experience, too ‘high’ a value of the viscosity 
may result in an ill-conditioned matrix. Moreover, since a finite value of ‘high’ viscosity was used, 
it may be inferred that at best a solid phase is being ‘approached’ from the computational 
viewpoint. 

The next difficulty was to assign the no-slip conditions at the interface. Since in the fixed grid 
method the interface need not coincide with the nodes, a zeroth-order solution can be envisaged 
by assigning no-slip conditions at the nodes nearest to the predetermined interface position. 
Although the method looks straightforward from the computational point of view, we experi- 
enced difficulties in confining the flow to the liquid zone alone and significantly ‘high‘ values of 
the velocities were observed at nodes in the ‘solid’ phase. 

At this stage we had to abandon the work on the fixed grid method. However, the results were 
better compared to the earlier method and we feel that with the introduction of higher-order 
elements with larger number of nodes the method may yield satisfactory results. A detailed 
discussion on the application of the fixed grid method can be found in Reference 18. 
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PRESENT METHOD 

Consider the PCM (Figure 1) at its fusion temperature, i.e. there is no subcooling. An attempt is 
made to transform the irregular-shaped liquid cavity into an orthogonal computational space by 
using the transformation 

Y= Y, X = X / C , (  Y ) .  (2) 
This results in a square-shaped computational domain. However, with the introduction of this 
transformation the conservation equation (1aHld) take the form 

continuity: OV=o; (34 
( v  . P)V = - VP + ez  + (VV)/A; (3b) 

energy: (V*8)8=V2BJAPr. (34 

momentum: 

Here z is the unit vector in the direction of gravity and 

The corresponding boundary conditions in the computational domain become 

(a) at X = o  u= v=O,  e = i ;  

(b) at X=1: U=V=O, O=O; 

(c) at 8=o u= v=o, ae/aY=o; 
(d) at Y=i: v=o, ae/aF=o. 

The transformation function CL( Y) is usually called the melt front shape function or stretching 
function and is required to be defined not only for the nodes along the interface but also for other 
nodes in the liquid zone. In the case of subcooling, another shape function Cs( Y) (Figure 1) can be 
defined and a similar transformation will result in another square computational domain in 
which the following relation holds: C,( Y )  + Cs( Y )  = W/H. The conduction equation is then 
solved in this computational plane with two different side wall temperatures as discussed earlier, 
while the two horizontal surfaces are assumed to be insulated. 

The numerical simulation is initiated by assuming the existence of a thin melt layer in which the 
classical Stefan solution is valid. This melt volume corresponds to less than 6% of the total melt. 
It is also assumed that the shape of this initial melt does not significantly affect the subsequent 
evolution of the melt front. At each quasi-static step the governing equations (3aH3c) are solved 
in the orthogonal computational domain with the associated boundary conditions. Upon 
convergence, the criterion of which has been discussed earlier, the temperature and flow fields are 
referred back to the physical domain. Heat fluxes are calculated and interface displacements are 
obtained by employing the interface energy balance equation. A cubic spline is then fitted through 
these points to obtain a smooth interface shape. The new domain is again discretized and the melt 
front shape functions, i.e. CL, are determined at the interface nodes. Shape functions at the 
interior nodes are calculated using linear interpolation. The process is then repeated. In the 
computational domain the x- and y-extends in the region around the cold corners, particularly 
the one near the interface, are not allowed to exceed 0.01. The non-dimensional time step is taken 
as 0~00001 for each quasi-static step. Consequently, a large number of simulation. steps have to be 
performed to obtain a significant amount of melt. It has also been observed that the number of 
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iterations required to attain convergence for a quasi-static step may be as low as three during the 
initial period of melting and may even run up to eight with the full onset of convection. On 
average it takes around 400 CPU time on a Siemens 7580E system for each quasi-static step. 

RESULTS AND DISCUSSION 

The results for the cases of zero nd non-zero subcooling are obtained for Ra = los, Pr = 50 and 
Ste = 0.2. 

Zero subcooling 

Figure 2 shows the evolution of the melt front profiles for two different aspect ratios, i.e. 5.25 
and 2.44, for zero subcooling. In the interest of clarity, only one melt front shape in each case has 
been compared with experiment. l 9  It is interesting to note that the interface in effect represents 
a zero isotherm. During the initial period, heat transfer is dominated by conduction, a fact which 
is confirmed by the presence of an almost vertical zero isotherm, i.e. the interface. As heating is 
continued, the upper part of the interface near the free surface becomes slightly curved. This 
earlier departure of the melting behaviour from the conduction-dominated regime may be 
attributed to the presence of density-induced melt motion resulting from the volume increase 
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Figure 2. Time evolution of melt front profiles (cold wall on left) 



HEAT TRANSFER DURING MELTING 89 

which accompanies the phase change. Another interesting possibility is the existence of surface 
tension along the free surface. During the initial period of melting, the melt cavity being very 
shallow, surface tension may have a significant role in the heat transfer, at least around the region 
near the interface. As heating is continued still further, the mode of heat transfer gradually 
changes from conduction to natural convection. Liquid melt around the hot wall, while moving 
up, receives heat from the wall and attains its maximum temperature near the free surface. It then 
takes a 90" turn and flows towards the cold interface where maximum heat transfer occurs. 
During its journey downwards, it continues transferring heat to the interface and its temperature 
decreases. Hence it is easy to perceive that maximum melting will occur at the top while the least 
amount of melting is expected at the bottom. Figure 3 demonstrates the pattern of streamlines 
with fully developed natural convection conditions in a melt cavity with an aspect ratio of 5-25 
and zero subcooling. It clearly shows the presence of a strong recirculating flow within the melt 
cavity. The disagreement at the bottom of the interface is attributed to the fact that a considerable 
amount of conduction occurs along the bottom plate of the container in the e~periment.'~ 

Figure 4 shows the considerable influence of the aspect ratio on the melt fraction. This result is 
of considerable practical interest since it has a bearing on optimizing the dimensions of latent heat 
storage elements. Gadgil and Gobins presented the same type of results, but the flow parameter, 
i.e. RaH, was not held constant. Hence the effect of the aspect ratio on the melt fraction is closely 
associated with RaH in their work. To make the comparison more effective, the flow parameters 
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have been held constant in the present work. The diverging nature of the melt fraction curves 
clearly indicates that the higher the aspect ratio, the higher is the melt fraction. 

Figure 5 exhibits the variation of Nusselt number with dimensionless time. It shows that the 
Nusselt number starts with a value of the order of 250. As the cavity widens, NuH rapidly 
decreases until the cavity is wide enough to allow the onset of fully developed convection. 

This slows down the decrease in Nusselt number. It may also be observed that with elapse of 
time the trend of the Nusselt number assumes an asymptotic nature, a phenomenon which is 
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explained by the fact that when the cavity is wide enough, any subsequent event around the 
interface does not significantly alter the thermal field around the hot wall. 

Nun-zero subcooling 

Two cases with different subcooling parameters have been considered. Figure 6 shows the time 
evolution of the melt front profiles for subcooling parameters of 0-01 and 0.183. Figure 4 shows 
the variation of melt fraction with dimensionless time. It may be observed that although the initial 
melt fraction has been kept the same, the melt fraction curves diverge slowly. At any given time 
the melt fraction is greater with lower subcooling, indicating that subcooling impedes the 
development of the melt front. 

Figure 5 shows the Nusselt numbers at the hot wall and the interface (Nui) as functions of 
dimensionless time. The difference between the two Nusselt numbers under subcooling condi- 
tions is observed to be small. This is due to the fact that the temperature field is not affected 
significantly by subcooling. Within the limits of the melt fraction in the present study, it has been 
observed that subcooling tends to assert a larger and larger influence on the interface Nusselt 
number as the melt front approaches the other end of the container. It is somewhat evident from 
Figure 5 that the two Nusselt numbers diverge very slowly for a subcooling parameter of 0.183, 
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while for SC = 0.01 the two curves almost coincide. This coincidence is expected to be lost near the 
end. In the light of these observations we attempted to compute the hot wall Nusselt number 
when the PCM has melted completely. The result was that a very high value of NuH was obtained. 
For example, the value of NuH was 75 while the asymptotic behaviour of NuH for SC=O*183 
indicates that NuH should be around 40 (Figure 5). This anomaly is explained by the fact that for 
100% melt the temperature differential is between unity at the hot wall and -0.915 at the cold 
wall, while in other cases, when some solid PCM still exists, the driving potential in the liquid melt 
is between unity and zero. Then, for the 100% melt condition, there is a sudden increase in driving 
potential across the liquid melt. This observation indicates that any extrapolation towards 
obtaining NuH for 100% melt should not be attempted when the value of the subcooling 
parameter is high. Hence a relatively close agreement is expected for SC=O.Ol. In fact, for 
SC=O*Ol the computed value of NuH for 100% melt is found to be 36, while the trend as evident 
from Figure 5 shows that the expected value will be around 38. 

CONCLUSIONS 

The performance of the present method of employing the transformation seems to work quite 
well. However, it is worthwhile to mention that the transformation works very well as long as 
dCL/dy <0.3.7 Hence near the top, where the interface is very much curved, some discrepancies 
are expected to occur. This is probably due to the neglect of first- and higher-order derivatives of 
CL while transforming the natural conservation equations. 

APPENDIX: NOMENCLATURE 

dimensional co-ordinates 
physical dimensionless co-ordinates in transformed computational domain 
wetted height of enclosure 
width of enclosure 
horizontal and vertical components of velocity 
non-dimensional velocities 
non-dimensional pressure 
pressure 
Prandtl number, v/u 
Rayleigh number (based on H ) ,  GIH Pr 
Grashof number, j3g(Tw- Tm)H3/v2 
acceleration due to gravity 
temperature of hot and cold walls 
melting point of PCM 
Stefan number, C,,(T, - T,)/L 
latent heat of fusion 
subcooling parameter, C,( T, - T,)/L 
non-dimensional time, a t / H  
Nusselt number at hot wall (average), j t  (Vd * n)x= d Y 
non-dimensional length of interface 
average Nusselt number at interface based on difference between liquid and solid side 
heat fluxes, jr [(V8.n)~-(V8.n)s]dr/S, dr 
non-dimensional displacement of interface 
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Greek symbols 

CI 

P expansion coefficient 
V viscosity of liquid PCM 
8 
z dimensional time 

thermal diffusivity of liquid PCM 

dimensionless temperature, (T- T,)/T, T, 
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